DLK1(PREF1) is a negative regulator of adipogenesis in CD105⁺/CD90⁺/CD34⁺/CD31⁻/FABP4⁻ adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women.
نویسندگان
چکیده
The main physiological function of adipose-derived stromal/progenitor cells (ASC) is to differentiate into adipocytes. ASC are most likely localized at perivascular sites in adipose tissues and retain the capacity to differentiate into multiple cell types. Although cell surface markers for ASC have been described, there is no complete consensus on the antigen expression pattern that will precisely define these cells. DLK1(PREF1) is an established marker for mouse adipocyte progenitors which inhibits adipogenesis. This suggests that DLK1(PREF1) could be a useful marker to characterize human ASC. The DLK1(PREF1) status of human ASC is however unknown. In the present study we isolated ASC from the heterogeneous stromal vascular fraction of subcutaneous abdominal fat pats of adult women. These cells were selected by their plastic adherence and expanded to passage 5. The ASC were characterized as relatively homogenous cell population with the capacity to differentiate in vitro into adipocytes, chondrocytes, and osteoblasts and the immunophenotype CD105⁺/CD90⁺/CD34⁺/CD31⁻/FABP4⁻. The ASC were positive for DLK1(PREF1) which was well expressed in proliferating and density arrested cells but downregulated in the course of adipogenic differentiation. To investigate whether DLK1(PREF1) plays a role in the regulation of adipogenesis in these cells RNAi-mediated knockdown experiments were conducted. Knockdown of DLK1(PREF1) in differentiating ASC resulted in a significant increase of the expression of the adipogenic key regulator PPARγ2 and of the terminal adipogenic differentiation marker FABP4. We conclude that DLK1(PREF1) is well expressed in human ASC and acts as a negative regulator of adipogenesis. Moreover, DLK1(PREF1) could be a functional marker contributing to the characterization of human ASC.
منابع مشابه
Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates.
Liposuction aspirates (primarily saline solution, blood, and adipose tissue fragments) separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and contain adipose-derived adherent stromal cells (ASCs). Here we define cells isolated from the fluid portion of liposuction aspirates as liposuction aspirate fluid (LAF) cells. Stroma...
متن کاملDifferentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells
Objective(s):Mesenchymal stem cells (MSC) can be isolated from adult tissues such as adipose tissue and other sources. Among these sources, adipose tissue (because of easy access) and placenta (due to its immunomodulatory properties, in addition to other useful properties), have attracted more attention in terms of research. The isolation and comparison of MSC from these two sources provides a ...
متن کاملOsteogenic Potential of Mouse Adipose-Derived Stem Cells Sorted for CD90 and CD105 In Vitro
Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD) marker profiles similar to those of other somatic stem cells. Variations in phenotypes or different...
متن کاملHuman Mesenchymal Stem Cells Derived from Adiopose Tissue and Placenta and the Adipocytic and Osteocytic Differentiation
Introduction: Mesenchymal stem cells can be isolated from adult tissues, such as the adipose tissue, or other sources. Among all these sources, adipose tissue because of easy access, and placenta due to its immunomodulatory properties, in addition to another useful properties, were attracted more attention to themselves. Isolation and comparing these two different sources can help us for acces...
متن کاملAdipose Stromal Cells Contain Phenotypically Distinct Adipogenic Progenitors Derived from Neural Crest
Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cell research
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2012